[GigaCourse.com] Udemy - Python for Time Series Data Analysis
File List
- 08. General Forecasting Models/066. ARMA and ARIMA - AutoRegressive Integrated Moving Average - Part Two.mp4 64.6 MB
- 08. General Forecasting Models/060. Descriptive Statistics and Tests - Part Two.mp4 49.0 MB
- 09. Deep Learning for Time Series Forecasting/086. Keras and RNN Project - Part Three.mp4 46.7 MB
- 08. General Forecasting Models/069. SARIMAX - Seasonal Autoregressive Integrated Moving Average Exogenous - PART TWO.mp4 43.0 MB
- 08. General Forecasting Models/058. Autoregression - AR with Statsmodels.mp4 41.8 MB
- 08. General Forecasting Models/073. VAR - Code Along - Part Two.mp4 37.8 MB
- 08. General Forecasting Models/070. SARIMAX - Seasonal Autoregressive Integrated Moving Average Exogenous - PART 3.mp4 36.7 MB
- 10. Facebook's Prophet Library/091. Facebook Prophet Evaluation.mp4 35.6 MB
- 08. General Forecasting Models/067. SARIMA - Seasonal Autoregressive Integrated Moving Average.mp4 35.0 MB
- 10. Facebook's Prophet Library/090. Facebook's Prophet Library.mp4 34.8 MB
- 05. Data Visualization with Pandas/024. Visualizing Data with Pandas.mp4 32.6 MB
- 08. General Forecasting Models/064. Choosing ARIMA Orders - Part Two.mp4 31.8 MB
- 08. General Forecasting Models/072. VAR - Code Along.mp4 31.2 MB
- 08. General Forecasting Models/075. Vector AutoRegression Moving Average - VARMA - Code Along.mp4 29.2 MB
- 09. Deep Learning for Time Series Forecasting/081. Keras Basics.mp4 29.1 MB
- 06. Time Series with Pandas/039. Time Series with Pandas Project Exercise - Set Two - Solutions.mp4 27.4 MB
- 08. General Forecasting Models/055. ACF and PACF Code Along.mp4 27.3 MB
- 04. Pandas Overview/022. Pandas Exercises Solutions.mp4 26.9 MB
- 02. Course Set Up and Install/005. Installing Anaconda Python Distribution and Jupyter.mp4 26.7 MB
- 07. Time Series Analysis with Statsmodels/047. Holt - Winters Methods Code Along - Part Two.mp4 26.6 MB
- 07. Time Series Analysis with Statsmodels/044. EWMA - Exponentially Weighted Moving Average.mp4 26.2 MB
- 09. Deep Learning for Time Series Forecasting/088. Keras and RNN Exercise Solutions.mp4 26.2 MB
- 04. Pandas Overview/015. DataFrames - Part One.mp4 23.7 MB
- 06. Time Series with Pandas/035. Visualizing Time Series Data - Part Two.mp4 23.4 MB
- 06. Time Series with Pandas/031. Time Resampling.mp4 22.4 MB
- 08. General Forecasting Models/051. Introduction to Forecasting Models Part One.mp4 22.1 MB
- 08. General Forecasting Models/065. ARMA and ARIMA - AutoRegressive Integrated Moving Average - Part One.mp4 21.8 MB
- 07. Time Series Analysis with Statsmodels/041. Introduction to Statsmodels Library.mp4 21.5 MB
- 09. Deep Learning for Time Series Forecasting/084. Keras and RNN Project - Part One.mp4 21.1 MB
- 04. Pandas Overview/020. Data Input and Output.mp4 20.8 MB
- 09. Deep Learning for Time Series Forecasting/085. Keras and RNN Project - Part Two.mp4 20.6 MB
- 04. Pandas Overview/016. DataFrames - Part Two.mp4 20.6 MB
- 06. Time Series with Pandas/034. Visualizing Time Series Data.mp4 20.6 MB
- 08. General Forecasting Models/053. Introduction to Forecasting Models Part Two.mp4 20.3 MB
- 08. General Forecasting Models/056. ARIMA Overview.mp4 20.0 MB
- 06. Time Series with Pandas/030. DateTime Index Part Two.mp4 19.9 MB
- 08. General Forecasting Models/077. Forecasting Exercises - Solutions.mp4 19.4 MB
- 07. Time Series Analysis with Statsmodels/046. Holt - Winters Methods Code Along - Part One.mp4 18.2 MB
- 07. Time Series Analysis with Statsmodels/042. ETS Decomposition.mp4 17.7 MB
- 03. NumPy/007. NumPy Arrays - Part One.mp4 17.3 MB
- 03. NumPy/009. NumPy Indexing and Selection.mp4 17.2 MB
- 05. Data Visualization with Pandas/025. Customizing Plots created with Pandas.mp4 16.5 MB
- 06. Time Series with Pandas/033. Rolling and Expanding.mp4 15.3 MB
- 03. NumPy/012. NumPy Exercise Solutions.mp4 15.3 MB
- 05. Data Visualization with Pandas/027. Pandas Data Visualization Exercise Solutions.mp4 14.6 MB
- 06. Time Series with Pandas/029. DateTime Index.mp4 14.4 MB
- 07. Time Series Analysis with Statsmodels/045. Holt - Winters Methods Theory.mp4 14.0 MB
- 04. Pandas Overview/019. Common Operations.mp4 13.9 MB
- 04. Pandas Overview/014. Series.mp4 13.9 MB
- 08. General Forecasting Models/054. ACF and PACF Theory.mp4 13.8 MB
- 09. Deep Learning for Time Series Forecasting/083. LSTMS and GRU.mp4 13.8 MB
- 03. NumPy/008. NumPy Arrays - Part Two.mp4 13.5 MB
- 08. General Forecasting Models/052. Evaluating Forecast Predictions.mp4 12.9 MB
- 07. Time Series Analysis with Statsmodels/049. Statsmodels Time Series Exercise Solutions.mp4 12.8 MB
- 08. General Forecasting Models/061. Descriptive Statistics and Tests - Part Three.mp4 12.4 MB
- 10. Facebook's Prophet Library/093. Facebook Prophet Seasonality.mp4 12.2 MB
- 04. Pandas Overview/017. Missing Data with Pandas.mp4 12.1 MB
- 08. General Forecasting Models/059. Descriptive Statistics and Tests - Part One.mp4 12.0 MB
- 02. Course Set Up and Install/005.1 TSA_COURSE_NOTEBOOKS.zip 11.7 MB
- 06. Time Series with Pandas/038. Time Series with Pandas Project Exercise - Set Two.mp4 11.4 MB
- 01. Introduction/001.1 UDEMY_TSA_FINAL.zip 10.9 MB
- 01. Introduction/004.1 UDEMY_TSA_FINAL.zip 10.9 MB
- 08. General Forecasting Models/068. SARIMAX - Seasonal Autoregressive Integrated Moving Average Exogenous - PART ONE.mp4 10.8 MB
- 03. NumPy/010. NumPy Operations.mp4 10.4 MB
- 09. Deep Learning for Time Series Forecasting/082. Recurrent Neural Network Overview.mp4 10.3 MB
- 01. Introduction/001. Course Overview - PLEASE DO NOT SKIP THIS LECTURE.mp4 9.8 MB
- 09. Deep Learning for Time Series Forecasting/087. Keras and RNN Exercise.mp4 9.8 MB
- 08. General Forecasting Models/063. Choosing ARIMA Orders - Part One.mp4 9.7 MB
- 06. Time Series with Pandas/037. Time Series Exercises - Set One - Solutions.mp4 9.2 MB
- 06. Time Series with Pandas/032. Time Shifting.mp4 9.2 MB
- 09. Deep Learning for Time Series Forecasting/080. Introduction to Neural Networks.mp4 8.9 MB
- 04. Pandas Overview/018. Group By Operations.mp4 8.6 MB
- 08. General Forecasting Models/062. ARIMA Theory Overview.mp4 8.5 MB
- 08. General Forecasting Models/057. Autoregression - AR - Overview.mp4 8.3 MB
- 08. General Forecasting Models/071. Vector AutoRegression - VAR.mp4 8.3 MB
- 10. Facebook's Prophet Library/092. Facebook Prophet Trend.mp4 7.9 MB
- 04. Pandas Overview/021. Pandas Exercises.mp4 7.8 MB
- 07. Time Series Analysis with Statsmodels/048. Statsmodels Time Series Exercises.mp4 7.0 MB
- 05. Data Visualization with Pandas/026. Pandas Data Visualization Exercise.mp4 6.9 MB
- 09. Deep Learning for Time Series Forecasting/079. Perceptron Model.mp4 6.8 MB
- 07. Time Series Analysis with Statsmodels/043. EWMA - Theory.mp4 6.6 MB
- 09. Deep Learning for Time Series Forecasting/078. Introduction to Deep Learning Section.mp4 6.4 MB
- 08. General Forecasting Models/076. Forecasting Exercises.mp4 6.1 MB
- 01. Introduction/003. Course Curriculum Overview.mp4 6.0 MB
- 08. General Forecasting Models/050. Introduction to General Forecasting Section.mp4 5.3 MB
- 10. Facebook's Prophet Library/089. Overview of Facebook's Prophet Library.mp4 4.8 MB
- 03. NumPy/011. NumPy Exercises.mp4 4.5 MB
- 08. General Forecasting Models/074. Vector AutoRegression Moving Average - VARMA.mp4 4.0 MB
- 06. Time Series with Pandas/036. Time Series Exercises - Set One.mp4 3.6 MB
- 05. Data Visualization with Pandas/023. Overview of Capabilities of Data Visualization with Pandas.mp4 2.4 MB
- 07. Time Series Analysis with Statsmodels/040. Introduction to Time Series Analysis with Statsmodels.mp4 2.0 MB
- 06. Time Series with Pandas/028. Overview of Time Series with Pandas.mp4 1.8 MB
- 04. Pandas Overview/013. Introduction to Pandas.mp4 1.7 MB
- 03. NumPy/006. NumPy Section Overview.mp4 1.1 MB
- 01. Introduction/004. FAQ - Frequently Asked Questions.html 5.1 KB
- Readme.txt 962 bytes
- 01. Introduction/002. Course Overview Check.html 140 bytes
- 02. Course Set Up and Install/005.2 The .yml file..html 127 bytes
- [GigaCourse.com].url 49 bytes
Download Torrent
Related Resources
Copyright Infringement
If the content above is not authorized, please contact us via anywarmservice[AT]gmail.com. Remember to include the full url in your complaint.