[FreeCourseSite.com] Udemy - Machine Learning A-Z with Python with Project (Beginner)
File List
- 6. Regression/1. Linear Regression.mp4 449.5 MB
- 4. ntroduction to Python/5. Data Structures.mp4 380.4 MB
- 4. ntroduction to Python/8. Data Visualisation.mp4 356.1 MB
- 4. ntroduction to Python/7. Pandas.mp4 344.0 MB
- 4. ntroduction to Python/6. Numpy.mp4 324.7 MB
- 7. Classification/1. Logistic Regression.mp4 321.5 MB
- 7. Classification/2. KNN.mp4 285.9 MB
- 10. Our Project (Recomendation System)/2. Recommendations System.mp4 283.8 MB
- 4. ntroduction to Python/4. Python Basics II.mp4 219.0 MB
- 7. Classification/5. Decision Tree.mp4 217.0 MB
- 4. ntroduction to Python/3. Python_Basics.mp4 190.9 MB
- 9. Ensemble ML/2. Boosting.mp4 165.6 MB
- 10. Our Project (Recomendation System)/1. PCA.mp4 157.9 MB
- 9. Ensemble ML/1. Bagging.mp4 156.5 MB
- 8. Clustering/1. K-means.mp4 137.5 MB
- 4. ntroduction to Python/9. Data Transformation.mp4 120.6 MB
- 5. Let's dig Machine Learning/1. Machine Learning Intro.mp4 119.0 MB
- 3. Applied Statistics/8. Hypothesis Testing.mp4 107.4 MB
- 3. Applied Statistics/7. Probability Distribution.mp4 95.0 MB
- 2. Introduction to Machine Learning/1. Introduction to Machine Learning.mp4 87.3 MB
- 7. Classification/3. Naïve Bayes.mp4 86.2 MB
- 8. Clustering/3. DBScan.mp4 84.4 MB
- 4. ntroduction to Python/1. Python Installation.mp4 79.5 MB
- 3. Applied Statistics/3. Descriptive Statistics (Part-2).mp4 73.1 MB
- 8. Clustering/2. Hierarchical Clustering.mp4 65.2 MB
- 7. Classification/4. SVM.mp4 64.7 MB
- 3. Applied Statistics/5. Probability.mp4 61.3 MB
- 3. Applied Statistics/4. Measures of Spread.mp4 60.8 MB
- 3. Applied Statistics/1. Statistics 101.mp4 59.1 MB
- 4. ntroduction to Python/2. Python IDE.mp4 47.1 MB
- 3. Applied Statistics/6. Conditional Probability.mp4 34.5 MB
- 3. Applied Statistics/2. Descriptive Statistics.mp4 32.1 MB
- 1. Foundation/1. Introduction.mp4 7.8 MB
- 6. Regression/1. Linear Regression.srt 78.0 KB
- 4. ntroduction to Python/6. Numpy.srt 69.9 KB
- 4. ntroduction to Python/5. Data Structures.srt 68.3 KB
- 4. ntroduction to Python/7. Pandas.srt 66.0 KB
- 4. ntroduction to Python/8. Data Visualisation.srt 61.6 KB
- 7. Classification/1. Logistic Regression.srt 55.8 KB
- 10. Our Project (Recomendation System)/2. Recommendations System.srt 53.2 KB
- 4. ntroduction to Python/4. Python Basics II.srt 52.2 KB
- 7. Classification/2. KNN.srt 51.1 KB
- 4. ntroduction to Python/3. Python_Basics.srt 40.9 KB
- 10. Our Project (Recomendation System)/1. PCA.srt 37.1 KB
- 7. Classification/5. Decision Tree.srt 34.7 KB
- 9. Ensemble ML/1. Bagging.srt 30.0 KB
- 4. ntroduction to Python/9. Data Transformation.srt 26.1 KB
- 8. Clustering/1. K-means.srt 23.3 KB
- 5. Let's dig Machine Learning/1. Machine Learning Intro.srt 21.8 KB
- 9. Ensemble ML/2. Boosting.srt 21.7 KB
- 3. Applied Statistics/8. Hypothesis Testing.srt 19.3 KB
- 7. Classification/3. Naïve Bayes.srt 18.7 KB
- 3. Applied Statistics/3. Descriptive Statistics (Part-2).srt 17.6 KB
- 3. Applied Statistics/7. Probability Distribution.srt 17.4 KB
- 4. ntroduction to Python/2. Python IDE.srt 16.2 KB
- 3. Applied Statistics/5. Probability.srt 15.7 KB
- 8. Clustering/3. DBScan.srt 14.7 KB
- 3. Applied Statistics/4. Measures of Spread.srt 13.7 KB
- 2. Introduction to Machine Learning/1. Introduction to Machine Learning.srt 13.5 KB
- 3. Applied Statistics/1. Statistics 101.srt 12.8 KB
- 4. ntroduction to Python/1. Python Installation.srt 12.1 KB
- 7. Classification/4. SVM.srt 11.6 KB
- 8. Clustering/2. Hierarchical Clustering.srt 10.9 KB
- 3. Applied Statistics/2. Descriptive Statistics.srt 7.6 KB
- 3. Applied Statistics/6. Conditional Probability.srt 7.1 KB
- 1. Foundation/1. Introduction.srt 3.0 KB
- 0. Websites you may like/[FCS Forum].url 133 bytes
- 0. Websites you may like/[FreeCourseSite.com].url 127 bytes
- 0. Websites you may like/[CourseClub.ME].url 122 bytes
- 0. Websites you may like/[GigaCourse.Com].url 49 bytes
Download Torrent
Related Resources
Copyright Infringement
If the content above is not authorized, please contact us via anywarmservice[AT]gmail.com. Remember to include the full url in your complaint.